Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Samuel Robinson Jebas, ${ }^{\text {a }}$
 Thailampillai
 Balasubramanian, ${ }^{\text {a }}$ *
 Balasingh Ravidurai ${ }^{\text {b }}$ and Sudalaiandi Kumaresan ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Physics, National Institute of Technology, Tiruchirappalli 620015 , India, and ${ }^{\text {b }}$ Department of Chemistry, Manonmaniam Sundaranar University, Tirunelveli 629 012, India

Correspondence e-mail: bala@nitt.edu

Key indicators

Single-crystal X-ray study
$T=303 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.052$
$w R$ factor $=0.150$
Data-to-parameter ratio $=12.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(Acetylsulfanyl)pyridine N-oxide

The title compound, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{3} \mathrm{~S}$, is a simple new pyridylthioN -oxide of pharmacological interest. There are two independent molecules in the asymmetric unit. Strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond interactions link the molecules in ribbons lying in the (101) plane.

Comment

N -Oxides and their derivatives show a broad spectrum of biological activity, such as antifungal, antibacterial, antimicrobial and antibiotic activities (Lobana \& Bhatia, 1989). These compounds are also found to be involved in the DNA strand scission under physiological conditions (Katsuyuki et al., 1991).In view of the importance of N-oxide derivatives, the title compound, (I), has been synthesized and the crystal structure determined.

The asymmetric unit of (I) contains two independent molecules with similar geometry. Both molecules are essentially planar, the maximum deviations from planarity being 0.093 (4) and 0.102 (3) A for atoms C2 and O11, respectively.

The $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{S}$ bond lengths and angles are normal (Table 1). The $\mathrm{N}-\mathrm{O}$ bond lengths are in good

Figure 1
View of the asymmetric unit of the title compound (50\% probability displacement ellipsoids).

Received 21 June 2005 Accepted 12 July 2005 Online 23 July 2005
agreement with the mean value of $1.335 \AA$ reported in the literature for pyridine N-oxides (Allen et al., 1987).

In the crystal structure of (I), the molecules are linked by strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond interactions to form ribbons running parallel to the (101) plane (Table 2). In addition, weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions involving the ribbons are observed.

Experimental

The title compound was prepared by heating a mixture of 1-hydroxy-2-pyridinethione sodium salt ($0.447 \mathrm{~g}, 3 \mathrm{mmol}$) and chloroacetic acid $(0.292 \mathrm{~g}, 3.1 \mathrm{mmol})$ in methanol at 343 K with magnetic stirring for 1 h . Fine crystals were obtained after a week by slow cooling of the solution (yield 87%).
Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{3} \mathrm{~S}$

$M_{r}=185.20$
Monoclinic, $P 2_{1} / c$
$a=9.826$ (4) \AA
$b=13.596$ (2) \AA
$c=11.990$ (5) \AA
$\beta=102.06$ (4) ${ }^{\circ}$
$V=1566.6$ (10) \AA^{3}
$Z=8$

$$
D_{x}=1.562 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=2-25^{\circ}$
$\mu=0.37 \mathrm{~mm}^{-1}$
$T=303 \mathrm{~K}$
Prism, white
$0.24 \times 0.20 \times 0.18 \mathrm{~mm}$

Data collection

Nonius MACH3 four-circle diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.914, T_{\text {max }}=0.935$
3186 measured reflections
2751 independent reflections
1546 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R_{\text {int }}=0.060$
$\theta_{\max }=25.0^{\circ}$
$h=0 \rightarrow 11$
$k=-1 \rightarrow 16$
$l=-14 \rightarrow 13$
3 standard reflections frequency: 60 min intensity decay: none
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
All H -atom parameters refined
$w R\left(F^{2}\right)=0.150$
$S=1.02$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.075 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
2751 reflections
219 parameters
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.34 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {max }}=0.34 \mathrm{e} \AA \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.33 \mathrm{e} \AA^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

C2-S8	$1.806(4)$	C13-N11	$1.364(5)$
C3-N1	$1.359(5)$	C13-S20	$1.736(4)$
C3-S8	$1.739(4)$	C17-N11	$1.340(5)$
C7-N1	$1.346(5)$	N1-O3	$1.324(4)$
C12-S20	$1.802(4)$	N11-O13	$1.323(4)$
O3-N1-C7	$122.0(3)$	O13-N11-C13	$116.7(3)$
O3-N1-C3	$116.4(3)$	C17-N11-C13	$121.9(3)$
C7-N1-C3	$121.7(4)$	C3-S8-C2	$101.01(19)$
O13-N11-C17	$121.4(3)$	C13-S20-C12	$100.62(19)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 13^{\mathrm{i}}$	0.82	1.76	2.568 (5)	167
$\mathrm{O} 12-\mathrm{H} 12 \cdots \mathrm{O} 3^{\text {ii }}$	0.82	1.74	2.541 (5)	163
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 12{ }^{\text {iii }}$	0.93	2.51	3.325 (6)	147
C14-H14 . $\mathrm{O}^{\text {iiii }}$	0.93	2.55	3.344 (6)	144
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 1^{\text {iv }}$	0.93	2.51	3.420 (6)	168
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O}^{\text {iv }}$	0.93	2.45	3.250 (5)	144
C7-H7 . $\mathrm{O}^{\text {1 }}{ }^{\text {v }}$	0.93	2.41	3.286 (6)	156
C15-H15..O.O13 ${ }^{\text {vi }}$	0.93	2.51	3.347 (5)	149
C16-H16..O11 ${ }^{\text {vi }}$	0.93	2.57	3.477 (6)	164
C17-H17...O1 $1^{\text {vii }}$	0.93	2.40	3.279 (6)	157

Symmetry codes: (i) $x+1,-y+\frac{3}{2}, z-\frac{1}{2}$; (ii) $x,-y+\frac{3}{2}, z-\frac{1}{2}$; (iii) $-x+1,-y+1,-z$; (iv) $-x+1, y-\frac{1}{2},-z+\frac{1}{2} ; \quad$ (v) $\quad x,-y+\frac{3}{2}, z+\frac{1}{2} ; \quad$ (vi) $\quad-x, y-\frac{1}{2},-z+\frac{1}{2}$; (vii) $x-1,-y+\frac{3}{2}, z+\frac{1}{2}$.

The H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.97 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$, and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank Professor R. K. Rajaram, Coordinator, School of Physics, Madurai Kamaraj University, Madurai, India, for carrying out the data collection.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Katsuyuki, N., Carter, B. J., Xu, J. \& Hetch, S. M. (1991). J. Am. Chem. Soc. 113, 5100-5102.
Lobana, T. S. \& Bhatia, P. K. (1989). J. Sci. Ind. Res. 48, 394-401.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

